
A New Approach to Event Dissemination in
Distributed Systems

Anson Antony Fertal#1, P. Priya Ponnusamy#2
#Department of Computer Science and Engineering, Sri Shakthi Institute of Engineering and Technology

L&T Bypass Road, Coimbatore, India

Abstract— An approach for efficient event dissemination in a
distributed system for communication between the entities of
the system. The publish/subscribe systems are widely used for
event dissemination, which provide loose coupling between
publishers and subscribers, but the routing of events to
corresponding subscribers involves the issues of scalability and
load balancing with a large number of publishers and
subscribers. The approaches that have been adopted to deal
with these issues brings with it the need for addition or
utilization of more resources such as memory, bandwidth, etc.
The proposed system is an attempt to balance the utility and
utilization of resources thereby providing maximum benefits
with minimum utilization of resources using techniques such
as attribute and locality based grouping of publishers and
peer-to-peer model based on ring and binary-tree structures
for scalability and load balancing.

Keywords— Publish/subscribe, peer-to-peer, broker-less,
binary tree structure, cloud computing.

I. INTRODUCTION

Communication between entities in a distributed system
is one of the most important aspects that keep it alive and
consistent. With the emergence of cloud computing, the
communication and coordination among entities have
become ever more a deciding factor in the quality of service
provided. Among the various communication paradigms,
publish/subscribe communication paradigm has proved to
be very effective due to its inherent decoupling of
publishers from subscribers in terms of time, space, and
synchronization. Publishers are a group of entities that
generate events in the system, which are of interest to
another group called subscribers. The events are forwarded
to interested subscribers. The decoupling is evident in that
the publishers and subscribers are unaware of each other.
The number of publishers and subscribers could be a huge
number and they can join the system, perform functions,
and leave the system without being aware of each other.
While this lends a great flexibility, it brings with it the issue
of routing the events to the interested subscribers. A single
broker obviously would bog down as the number of entities
on either side increases. Also, the single broker is a
potential single-point of failure. To overcome this, in later
works, a network of brokers has been employed for load
balancing and fault tolerance. This approach brings with it
the problems of security and overhead of introducing
another layer of resources in between to reap the benefits of
the pub/sub paradigm.

Further improvements have made use of broker-less
environments, where subscribers form a peer-to-peer
overlay to handle the dissemination of events through the
network. Various protocols and structures have been
followed to arrange the peers to handle event dissemination
in a scalable, load-balanced, and fault tolerant manner,
which involves additional communication overhead
between the peers in addition to event forwarding.

This paper tries to address these problems in an efficient
manner by providing maximum benefit with very little
additional overhead in terms of memory and bandwidth
utilization. Publishers and subscribers are grouped based on
attributes, which in the proposed system has been adopted
as the ‘event type’ for simplicity. Furthermore, the
publishers and subscribers are separated based on locality
into user-defined regions. Publishers and subscribers first
register with a local server, which assigns them to groups
based on their attributes and publisher groups and
subscriber groups are matched with a one-to-one relation.
After registrations, members of each publisher group are
made aware of a finite set of subscribers whose group
match with the corresponding publishers.

For event dissemination, the event destined for a
particular group is forwarded to the finite set of subscribers
assigned to a publisher that form a ring-like structure
around the event being generated. These subscribers then
form a binary tree of subscribers with them acting as root
nodes and each node in the tree is responsible for
forwarding the events to only two children.

Fault detection and recovery is addressed by heartbeat
among neighbouring nodes at each level, which follows a
clockwise direction and introducing an additional path of
event dissemination, which is the left child of the failed
node in case of clockwise detection and right child in case
of anticlockwise detection. Event dissemination on this
additional path triggers event forwarding by the node that
received the event to the neighbouring node to the right in
addition to normal forwarding to its children.

II. SYSTEM ARCHITECTURE

The main components in the proposed system
architecture are:

1. Publisher Groups.
2. Subscriber Groups.
3. Registration and Membership/Group Generation

Servers.

Anson Antony Fertal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1606-1609

www.ijcsit.com 1606

Another concept used is the notion of separation of these
three basic components based upon user-defined regions.
The process of communication between these user-
defined regions is not addressed in this paper. The high-
level architecture is as shown in Figure 1. The publishers
and subscribers register with the local server in their
respective regions whose IPs are publicized to them.

A. Attribute-Based Pub/Sub Grouping

Attribute-based grouping uses common attributes of
entities to form groups. The set of attributes for an entity
may be represented by the set S = {A1, A2, …, An}, where
each Ai represents an attribute. In the proposed system, for
simplicity, event of interest for subscribers and type of
event injected into the system by publishers are matched for
attribute-based grouping. Publishers are grouped according
to the type of events to be generated by them and
subscribers by the events to be consumed by them. Let E be
the event space represented by {e1, e2, ..., em}, where ei
represents each unique event. Publisher and subscriber
groups are matched with each other based upon the events
to be generated and consumed. In the simplest case, each
publisher generates exactly one type of event and each
subscriber consumes exactly one type of event. In this case,
the number of groups generated will be the same as the
number of events in the event space, i.e., the set of groups,
G = {G1, G2, ..., Gm}. For each group, there are a set of
publishers and subscribers represented by {P1, P2, ..., Pn}
and {S1, S2, ..., Sn}. The number of groups that could
potentially be formed depends on the event space and the
subsets that could be formed out of a given event space.
The number of groups could be very large since given an
event space of ‘m’ elements, the number of possible subsets
that could be formed excluding the null set is 2m-1. However,
this creates only the overhead of generating groups, but the
number of entities will remain the same always and the aim
of this paper is not to devise an efficient algorithm for
generating groups but to handle any number of entities
participating in the system and disseminate events in a
lightweight, structured, and fault-tolerant fashion. Also, the
aim of grouping is to avoid unnecessary messages to groups
that are not interested in those messages.

Fig. 1. Pub/Sub Registration and Grouping

B. Publisher and Subscriber Group Allocation

During registration, the local server assigns the
publishers and subscribers to their respective groups. Once
adequate number of registrations has been made in a
subscriber group corresponding to a finite number greater
than ‘m’, the first ‘m’ members will be made known to the
matching publishers. The number ‘m’ is determined as m =
log2(n), where ‘n’ is the number of publishers. So, if there
are 16 publishers, m will be equal to 4. These nodes will
form a ring around the event as shown in Figure 2.

Each entity is uniquely identified by (IP,Port)
combination with grouping based on event type. So, a
publisher entity P could be represented by
{P:((IP,Port),event_type,region))}.

C. Peer-to-Peer Assignment Strategy

Publishers are assigned neighbors to whom events are to
be forwarded at the first ring or level equal to the number
m=log2(n), where n is the number of publishers in a
particular group. This is shown in Figure 2.

Each subscriber in the ring around the published event is
assigned two children from their respective group
recursively to form a binary tree and each node in the tree is
responsible for forwarding the event only to its two
immediate children. This is shown in Figure 3.

Fig. 2. Event Dissemination Initiation

Fig. 3. Event Dissemination Model

P

S

S S

S S

S
S

S

S S

S

S

Anson Antony Fertal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1606-1609

www.ijcsit.com 1607

III. EVENT DISSEMINATION MODEL

When an event is generated, the node generating the
event passes it on to its neighbors in the ring around it.
These neighbor nodes pass it on to its immediate children.
This event dissemination process continues at all nodes in
each ring following the binary tree structure until the leaf
nodes or the nodes in the outermost ring are reached. This is
depicted in Figure 3.

A. Fault Detection and Recovery

The aliveness property of nodes in the system is kept
track of by heartbeat messages by a node to another node in
the same ring following a clockwise direction.

An alternate path for event forwarding is taken by the
detecting node on behalf of the failed node. The event
dissemination is maintained without failure by forwarding
the event by the detector node to the left child of the failed
node, which is in the next ring, in addition to its child nodes.

For added fault tolerance capabilities, a second scenario
is also considered. Each node knows about its left and right
neighbours in the same ring. If a node does not receive a
heartbeat from the immediate neighbour on the left side, it
follows the same strategy as in the first scenario except that
it forwards the event to the right child of the failed node
towards its left in its ring.

Each node also knows about its parent. So, in the event
of receipt of a message from a node other than the parent, it
also forwards the message to the neighbouring node
towards its right in the clockwise direction; if the message
has not already been received, the message is accepted,
otherwise rejected.

B. Maintenance of the System Structure

The local server in each region maintains a list of
subscribers for each group, which reflects the system
structure. The list is updated according to the failure
detection messages from the nodes in the system. A node
which fails creates an empty position in the list and the first
newly joining node acquires that position. When a failed
node rejoins at a later time, it is given a leaf node position.

IV. APPROACH OVERVIEW AND ANALYSIS

The approach followed for the proposed system is a
combination of techniques of clustering based on locality
and attributes to provide a clear and structured way to
separate dissimilar entities and group similar entities and
peer-to-peer topology and binary tree structures for event
dissemination. Approach for fault detection is the use of
heartbeat messages with neighbouring nodes. The approach
has been proposed with a dynamic and wireless
environment in mind, though it is applicable to a wired
environment with well-defined structure like data centre
environments providing cloud computing services. A step
by step analysis of each of the goals of the approach is
given in the following paragraphs.

A. Restricting Messages within a Group and Avoiding
Single Point of Failure

With publisher and subscriber groups matched, it is
guaranteed that events are forwarded only to matching
groups. Since grouping and assignment of neighbors is
done by the server local to the respective publisher and
subscriber regions, there is no overhead on the part of
publishers and subscribers for this function. These entities
just register with the local server with their corresponding
attributes. Although a complete decoupling between
publishers and subscribers is not achieved, still a publisher
in a group only needs to know about log2(n) subscribers in
the group, where ‘n’ is the total number of publishers in the
group. The number of nodes in a ring also avoids a single
point of failure and prevents complete loss of a message.

B. Load Balancing

This system is inherently load balanced, as each node in
a ring is responsible only for forwarding the event to two
child nodes when in normal operation. In case of a failure
of a neighbouring node, a node will be responsible for
forwarding the event to a maximum of only one more mode,
namely the left child of the failed node following the
clockwise direction or the right child of the failed node
following the anti-clockwise direction. Similarly, a node
receiving an event from a node other than its parent is
responsible for forwarding the event to a maximum of only
one another node, namely its nearest neighbour towards the
right.

C. Scalability

Scalability in terms of the load incurred on a particular
node due to growth in the number of entities joining the
system is not an issue, as irrespective of the number of
nodes joining the load on a node in the rings is constant at a
maximum of 3. In terms of the time taken for the event to
reach the leaf nodes, it increases only logarithmically with
increase in the number of nodes, which again is well known
to be good in terms of scalability.

D. Fault Tolerance

The approach for fault tolerance is of heartbeats for fault
detection and uninterrupted message forwarding is achieved
through selection of alternate paths. Fault detection is tried
to be kept as simple as possible with each node detecting
the failure of its immediate neighbouring nodes and
recovery path being the left child of the failed node in case
of clockwise detection and right child of the failed node in
case of anti-clockwise detection. As an additional step to
achieve a higher degree of fault tolerance, any node that
receives an event from another node other than its parent,
forwards the event also to its nearest neighbour towards the
right. These three steps can be seen to provide fault
tolerance even in a scenario where more than 50% of the
nodes in a ring fail, which can be considered a rare
occurrence.

Anson Antony Fertal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1606-1609

www.ijcsit.com 1608

The three main aims of the approach, namely scalability,
load balancing, and fault tolerance is addressed in the
algorithms and analysis shows that these benefits are
achieved without much overhead in terms of memory or
processing power at each node. With the approach taken for
fault tolerance, there is an issue of duplication of messages,
which is addressed by ordering of messages through
sequencing and each node keeping track of messages
received recently, which allows it to reject duplicate
messages.

V. CONCLUSIONS AND FUTURE WORK

In this paper, the proposed system is presented as an
efficient way of disseminating events to entities waiting for
those events in a scalable, load-balanced, and fault-tolerant
fashion in a distributed environment like a data centre, a
sensor network, etc. Analysis shows that the system is
highly scalable in terms of the time required for
disseminating the events to all the nodes in the system as
well as the load on each entity in the system and bandwidth
consumption. The fault tolerance strategy adopted is seen
from the analysis to tolerate a complete failure in a
particular ring except for a single node, which is near to
ideal. The idea of grouping based on attributes and locality
poses some challenges since attributes may vary depending
upon what entities are involved in the distributed system
and the purpose of the system.

In future work, it is planned to address these issues and
devise efficient algorithms for event dissemination and fault
tolerance at the desired levels of performance proposed in
the paper.

REFERENCES
[1] Ming Li, Fan Ye, Minkyong Kim, Han Chen, and Hui Lei.

BlueDove: A Scalable and Elastic Publish/Subscribe Service.
[2] Xiaoyu Yang, Yingwu Zhu, and Yiming Hu. Scalable Content-

Based Publish/Subscribe Services over Structured Peer-to-Peer
Networks.

[3] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In SIGCOMM ’01.

[4] The Gnutella Protocol Specification v0.4, Document Revision 1.2.
[5] Robbert van Renesse, Yaron Minsky, and Mark Hayden. A Gossip-

Style Failure Detection Service.
[6] Abhinandan Das, Indranil Gupta, and Ashish Motivala. SWIM:

Scalable Weakly-consistent Infection-style Process Group
Membership Protocol.

[7] J. Nagarajarao, R.E. Strom, and D.C. Sturman. An efficient
multicast protocol for content-based publish-subscribe systems. In
ICDCS ’99, 1999.

[8] B. Y. Zhao, J. D. Kubiatowicz, and A.D. Joseph. Tapestry: An
infrastructure for fault-tolerance wide-area location and routing.
Technical Report UCB/CSD-01-1141, Computer Science Division,
University of California, Berkeley, April 2001.

[9] O.D. Sahin, A. Gupta, D. Agarwal, and A.E. Abbadi. Meghdoot:
Content-based publish/subscribe over p2p networks. In
ACM/IFIP/USENIX 5th International Middleware Conference,
Toronto, Ontario, Canada, Oct. 2004.

[10] K. P. Birman. The process group approach to reliable distributed
computing. Communications of the ACM, 36(12):36-53, Dec. 1993.

[11] G. Perng, C. Wang, and M.K. Reiter. Providing content-based
services in a peer-to-peer environment. In Proceedings of the third
International Workshop on Distributed Event-Based Systems
(DEBS), pages 74-79, Edinburgh, Scotland, UK, May 2004.

Anson Antony Fertal et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (2) , 2015, 1606-1609

www.ijcsit.com 1609

